Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis.

نویسندگان

  • Steve Vucic
  • Garth A Nicholson
  • Matthew C Kiernan
چکیده

Familial amyotrophic lateral sclerosis (FALS) is an inherited neurodegenerative disorder of the motor neurons. While 10-15% of cases are caused by mutations in the copper/zinc superoxide-dismutase-1 (SOD-1) gene, the dying-forward hypothesis, in which corticomotoneurons induce anterograde excitotoxic motoneuron degeneration, has been proposed as a potential mechanism. The present study applied novel threshold tracking transcranial magnetic stimulation techniques to investigate the mechanisms underlying neurodegeneration in FALS. Studies were undertaken in 14 asymptomatic and 3 pre-symptomatic SOD-1 mutation carriers, followed longitudinally for up to 3-years. The pre-symptomatic subjects were asymptomatic at the time of their initial study but developed symptoms during the follow-up period. Results were compared to 7 SOD-1 FALS patients, 50 sporadic ALS patients and 55 normal controls. Short-interval intracortical inhibition (SICI) was significantly reduced in SOD-1 FALS (-1.2 +/- 0.6%) and sporadic ALS patients (-0.7 +/- 0.3%) compared to asymptomatic SOD-1 mutation carriers (9.8 +/- 1.5%, P<0.00001) and normal controls (8.5 +/- 1.0%, P<0.00001). SICI reduction was accompanied by increases in intracortical facilitation, motor evoked potential amplitudes and the slope of the magnetic stimulus-response curve. In two pre-symptomatic SOD-1 mutation carriers SICI was completely absent (SICI patient 1, -3.2%; patients 2, -1.3%), while in one subject there was a 32% reduction in SICI prior to symptom onset. These three individuals subsequently developed clinical features of ALS. Simultaneous investigation of central and peripheral excitability has established that cortical hyperexcitability develops in clinically affected SOD-1 FALS patients, similar to that seen in sporadic ALS patients, thereby suggesting that a similar pathophysiological process in evident in both familial and sporadic ALS patients. In addition, the present study has established that cortical hyperexcitability precedes the development of clinical symptoms in pre-symptomatic carriers of the SOD1 mutation, thereby suggesting that cortical hyperexcitability underlies neurodegeneration in FALS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report

Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...

متن کامل

Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia

Acquired neuromyotonia encompasses a group of inflammatory disorders characterized by symptoms reflecting peripheral nerve hyperexcitability, which may be clinically confused in the early stages with amyotrophic lateral sclerosis. Despite a clear peripheral nerve focus, it remains unclear whether the ectopic activity in acquired neuromyotonia receives a central contribution. To clarify whether ...

متن کامل

The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis

The development of hyperexcitability in amyotrophic lateral sclerosis (ALS) is a well-known phenomenon. Despite controversy as to the underlying mechanisms, cortical hyperexcitability appears to be closely related to the interplay between excitatory corticomotoneurons and inhibitory interneurons. Hyperexcitability is not a static phenomenon but rather shows a pattern of progression in a spatiot...

متن کامل

Correction: The Wobbler Mouse Model of Amyotrophic Lateral Sclerosis (ALS) Displays Hippocampal Hyperexcitability, and Reduced Number of Interneurons, but No Presynaptic Vesicle Release Impairments

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical ...

متن کامل

Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1G93A mouse model of ALS

Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 131 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2008